Search Results

Documents authored by van de Wetering, John


Document
Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions

Authors: Aleks Kissinger, John van de Wetering, and Renaud Vilmart

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
Recent developments in classical simulation of quantum circuits make use of clever decompositions of chunks of magic states into sums of efficiently simulable stabiliser states. We show here how, by considering certain non-stabiliser entangled states which have more favourable decompositions, we can speed up these simulations. This is made possible by using the ZX-calculus, which allows us to easily find instances of these entangled states in the simplified diagram representing the quantum circuit to be simulated. We additionally find a new technique of partial stabiliser decompositions that allow us to trade magic states for stabiliser terms. With this technique we require only 2^{α t} stabiliser terms, where α≈ 0.396, to simulate a circuit with T-count t. This matches the α found by Qassim et al. [Qassim et al., 2021], but whereas they only get this scaling in the asymptotic limit, ours applies for a circuit of any size. Our method builds upon a recently proposed scheme for simulation combining stabiliser decompositions and optimisation strategies implemented in the software QuiZX [Kissinger and van de Wetering, 2022]. With our techniques we manage to reliably simulate 50-qubit 1400 T-count hidden shift circuits in a couple of minutes on a consumer laptop.

Cite as

Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kissinger_et_al:LIPIcs.TQC.2022.5,
  author =	{Kissinger, Aleks and van de Wetering, John and Vilmart, Renaud},
  title =	{{Classical Simulation of Quantum Circuits with Partial and Graphical Stabiliser Decompositions}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.5},
  URN =		{urn:nbn:de:0030-drops-165128},
  doi =		{10.4230/LIPIcs.TQC.2022.5},
  annote =	{Keywords: ZX-calculus, Stabiliser Rank, Quantum Simulation}
}
Document
Qutrit Metaplectic Gates Are a Subset of Clifford+T

Authors: Andrew N. Glaudell, Neil J. Ross, John van de Wetering, and Lia Yeh

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
A popular universal gate set for quantum computing with qubits is Clifford+T, as this can be readily implemented on many fault-tolerant architectures. For qutrits, there is an equivalent T gate, that, like its qubit analogue, makes Clifford+T approximately universal, is injectable by a magic state, and supports magic state distillation. However, it was claimed that a better gate set for qutrits might be Clifford+R, where R = diag(1,1,-1) is the metaplectic gate, as certain protocols and gates could more easily be implemented using the R gate than the T gate. In this paper we show that the qutrit Clifford+R unitaries form a strict subset of the Clifford+T unitaries when we have at least two qutrits. We do this by finding a direct decomposition of R ⊗ 𝕀 as a Clifford+T circuit and proving that the T gate cannot be exactly synthesized in Clifford+R. This shows that in fact the T gate is more expressive than the R gate. Moreover, we additionally show that it is impossible to find a single-qutrit Clifford+T decomposition of the R gate, making our result tight.

Cite as

Andrew N. Glaudell, Neil J. Ross, John van de Wetering, and Lia Yeh. Qutrit Metaplectic Gates Are a Subset of Clifford+T. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{glaudell_et_al:LIPIcs.TQC.2022.12,
  author =	{Glaudell, Andrew N. and Ross, Neil J. and van de Wetering, John and Yeh, Lia},
  title =	{{Qutrit Metaplectic Gates Are a Subset of Clifford+T}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.12},
  URN =		{urn:nbn:de:0030-drops-165195},
  doi =		{10.4230/LIPIcs.TQC.2022.12},
  annote =	{Keywords: Quantum computation, qutrits, gate synthesis, metaplectic gate, Clifford+T}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Circuit Extraction for ZX-Diagrams Can Be #P-Hard

Authors: Niel de Beaudrap, Aleks Kissinger, and John van de Wetering

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The ZX-calculus is a graphical language for reasoning about quantum computation using ZX-diagrams, a certain flexible generalisation of quantum circuits that can be used to represent linear maps from m to n qubits for any m,n ≥ 0. Some applications for the ZX-calculus, such as quantum circuit optimisation and synthesis, rely on being able to efficiently translate a ZX-diagram back into a quantum circuit of comparable size. While several sufficient conditions are known for describing families of ZX-diagrams that can be efficiently transformed back into circuits, it has previously been conjectured that the general problem of circuit extraction is hard. That is, that it should not be possible to efficiently convert an arbitrary ZX-diagram describing a unitary linear map into an equivalent quantum circuit. In this paper we prove this conjecture by showing that the circuit extraction problem is #P-hard, and so is itself at least as hard as strong simulation of quantum circuits. In addition to our main hardness result, which relies specifically on the circuit representation, we give a representation-agnostic hardness result. Namely, we show that any oracle that takes as input a ZX-diagram description of a unitary and produces samples of the output of the associated quantum computation enables efficient probabilistic solutions to NP-complete problems.

Cite as

Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. Circuit Extraction for ZX-Diagrams Can Be #P-Hard. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 119:1-119:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{debeaudrap_et_al:LIPIcs.ICALP.2022.119,
  author =	{de Beaudrap, Niel and Kissinger, Aleks and van de Wetering, John},
  title =	{{Circuit Extraction for ZX-Diagrams Can Be #P-Hard}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{119:1--119:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.119},
  URN =		{urn:nbn:de:0030-drops-164601},
  doi =		{10.4230/LIPIcs.ICALP.2022.119},
  annote =	{Keywords: ZX-calculus, circuit extraction, quantum circuits, #P}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail